Predicting Local Quality of a Sequence-Structure Alignment
نویسندگان
چکیده
Although protein structure prediction has made great progress in recent years, a protein model derived from automated prediction methods is subject to various errors. As methods for structure prediction develop, a continuing problem is how to evaluate the quality of a protein model, especially to identify some well-predicted regions of the model, so that the structural biology community can benefit from the automated structure prediction. It is also important to identify badly-predicted regions in a model so that some refinement measurements can be applied to it. We present two complementary techniques, FragQA and PosQA, to accurately predict local quality of a sequence-structure (i.e. sequence-template) alignment generated by comparative modeling (i.e. homology modeling and threading). FragQA and PosQA predict local quality from two different perspectives. Different from existing methods, FragQA directly predicts cRMSD between a continuously aligned fragment determined by an alignment and the corresponding fragment in the native structure, while PosQA predicts the quality of an individual aligned position. Both FragQA and PosQA use an SVM (Support Vector Machine) regression method to perform prediction using similar information extracted from a single given alignment. Experimental results demonstrate that FragQA performs well on predicting local fragment quality, and PosQA outperforms two top-notch methods, ProQres and ProQprof. Our results indicate that (1) local quality can be predicted well; (2) local sequence evolutionary information (i.e. sequence similarity) is the major factor in predicting local quality; and (3) structural information such as solvent accessibility and secondary structure helps to improve the prediction performance.
منابع مشابه
FragQA: predicting local fragment quality of a sequence-structure alignment.
MOTIVATION Although protein structure prediction has made great progress in recent years, a protein model derived from automated prediction methods is subject to various errors. As methods for structure prediction develop, a continuing problem is how to evaluate the quality of a protein model, especially to identify some well predicted regions of the model, so that the structure biology communi...
متن کاملIn Silico Analysis of Primary Sequence and Tertiary Structure of Lepidium Draba Peroxidase
Peroxidase enzymes are vastly applicable in industry and diagnosiss. Recently, we introduced a new kind of peroxidase gene from Lepidium draba (LDP). According to protein multiple sequence alignment results, LDP had 93% similarity and 88.96% identity with horseradish peroxidase C1A (HRP C1A). In the current study we employed in silico tools to determine, to which group of peroxidase enzymes LDP...
متن کاملContext similarity scoring improves protein sequence alignments in the midnight zone
MOTIVATION High-quality protein sequence alignments are essential for a number of downstream applications such as template-based protein structure prediction. In addition to the similarity score between sequence profile columns, many current profile-profile alignment tools use extra terms that compare 1D-structural properties such as secondary structure and solvent accessibility, which are pred...
متن کاملLocal structural alignment of RNA with affine gap model
BACKGROUND Predicting new non-coding RNAs (ncRNAs) of a family can be done by aligning the potential candidate with a member of the family with known sequence and secondary structure. Existing tools either only consider the sequence similarity or cannot handle local alignment with gaps. RESULTS In this paper, we consider the problem of finding the optimal local structural alignment between a ...
متن کاملTR 07 - 011 fRMSDPred : Predicting local rmsd between structural fragments using sequence information
The effectiveness of comparative modeling approaches for protein structure prediction can be substantially improved by incorporating predicted structural information in the initial sequence-structure alignment. Motivated by the approaches used to align protein structures, this paper focuses on developing machine learning approaches for estimating the RMSD value of a pair of protein fragments. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bioinformatics and computational biology
دوره 7 5 شماره
صفحات -
تاریخ انتشار 2009